α-EPITHIOKETOSTEROIDS: CONFORMATION AND REACTIVITY

A. V. KAMERNITZKY, A. M. TURUTA,* I. N. FUNDIELER and V. A. PAVLOV[†] Institute of Organic Chemistry, U.S.S.R. Academy of Sciences, Moscow, U.S.S.R.

and

M. YU. ANTIPIN, YU. T. STRUCKHOV and A. P. POLISHCHUK Institute of Organo-Element Compounds, U.S.S.R. Academy of Sciences, Moscow, U.S.S.R.

and

G. SNATZKE Ruhr University, Bochum, West Germany

(Received in the UK 23 April 1981)

Abstract—In order to correlate reactivity with geometry, the conformational analysis of $16,17\alpha$ -epithiopregnenolone has been carried out using X-ray analysis, low-temperature circular dichroism and quantum chemical calculation. Lack of conformational homogeneity of the acetyl side-chain is revealed; however the conformational equilibrium is restricted to the conformers with relative trans-orientation of epithio- and keto-groups.

It was observed that nucleophilic ring-opening of $16,17\alpha$ - epithio - 20 - oxosteroids $1^{1,2}$ markedly differs from that of $16,17\alpha$ - epoxy(epimino) - analogues.³ The distinctions are both in reactivity, increasing in the following sequence: oxirane 2 > NH-aziridine 3 > NAc-aziridine $4 \ge$ thiirane 1, and in the general direction of the reactions. Compared with oxirane 2, thiirane 1 is much more

 $X = S(I), O(2), NH(3), NAc(4), CH_2(5)$

inert in ring-opening reactions and commonly the reactions of 1 are completed with a desulphurisation. Only two cases are known,^{1,2} in which thiirane 1 reacts with attack of reagent (thiolacetic acid, benzyl mercaptan), leading to a regio- and stereoselective trans- ringe-scission at the secondary atom C-16. In most reactions of oxirane 2 such scission is predominant³ but not exclusive; cleavage at tertiary centre, in particular with thiolacetic acid,⁴ was also observed.

A ground-state conformation of the molecule are expected to be responsible, equally with other factors, for the three-membered ring-opening reactions.^{3,5} It, therefore, was of interest to evaluate the preferable geometry of thiirane 1. To this end we investigated, using X-ray crystallography (more detailed data of X-ray analysis for thiirane 1 were published in Ref. 6) and quantum chemical calculation of relative energies for different rotational isomers around the C-17-C-20 axis. The general view of 3-acetoxy $16,17\alpha$ - epithio - pregn - 5 - en - 3β - ol - 20 - on 1 in crystalline state with the

low-temperature CD techniques the conformation of 1 in

solid state and in solution. In addition, we carried out

interatomic distances is shown in Fig. 1. The bond distances shown in Fig. 1 are within the range of values normally found in other 5-pregnene molecules. 5-Membered ring D in this structure, as well as in $16,17\alpha$ epoxy - 20 - oxosteroid 2⁷ has C-14 α -envelope conformation (C-14 below the plane of the other D-ring atoms, which are coplanar to within 0.009 Å). The angle between C-13-C-15-bond and C-13, C-15-C-17 plane is equal to 38°. The sulfur atom is situated below the plane C-13C-17C-16C-15 atoms at-1, 567(2) Å, and the angle between that plane and three membered cycle plane is 68°. These data confirm the thiirane 1 structure and completely eliminate the literature contradictions on this matter.⁸⁻¹⁰

It is known that $16,17\alpha$ -substituted 20 - oxo - pregnanes have preferred orientation of the 17β -acetyl sidechain as illustrated in Fig. 2, conformer A.^{11,12} The situation, however, changes in a case of the compounds with three-membered cycle vicinity to the 20-carbonyl function. So, an unusual 17β -acetyl group conformation with trans-orientation 20-carbonyl group and threemembered ring relatively C-17-C-20-bond has been observed in $16,17\alpha$ -epoxy-^{3.7,13} and $16,17\alpha$ -methylene substituted^{13,14} structures. Preferred orientation of 17β acetyl chain for $16,17\alpha$ - epimino - 20 - oxosteroids 3, 4 depends considerably on the substitution at nitrogen atom, being cis- in NH-aziridine 3 (Fig. 2, conformer D) and gauche (conformer A) in N-acetylaziridine 4. We have found that side-chain conformation of thiirane 1 in solid agrees qualitatively with the conformation of oxirane 2, assigned on the basis of X-ray analysis.7 But the exact orientation of the side-chain in 1 is somewhat

[†]Research Fellow of the Alexander-von-Humboldt-Stiftung.

different from that observed in 2 and the torsion angles for these structures differ to the considerable extent. So, in crystalline state 20-carbonyl group of thiirane 1 is asymmetrically trans-oriented to the heterocycle (torsional angle C-21-C-20-C-17-C-16 = 13.6°) (Fig. 2, conformer B), whereas in oxirane 2 keto-group is symmetrically situated (conformer C).

The energies of thiirane 1 in different side-chain conformations were estimated by the CNDO/2 molecular orbital calculations based upon the observed atomic coordinates.⁶ Only a fragment of the steroid ring D was considered in the calculation. One of the strengths of this method is its ability to provide reasonable charge distribution in molecule. In Fig. 3 are presented the energy differences (ΔE) resulting from a complete rotation of 17 β -acetyl group around C-17–C-20-bond (15° stepwise of increments). According to the data the nearly symmetrical trans-conformer C has a minimum energy value. All the rest minimum energy values are occurred near the side-chain conformations in which torsional angle θ C-21-C-20-C-17-C-16 increases from + 30° to + 90°. But, as can be seen from Fig. 3, the energy increase due to the rotation of 17β -acetyl group in opposite direction up to preferred in crystalline state conformer B ($\theta = +13.6^{\circ}$) proceeds more rapidly. These results mean that the solidstate conformation of thiirane 1 is not energetically preferred (this discrepancy could result from the influence in the crystal of the intermolecular and packing forces that perturb and side-chain conformation¹⁵) and it may well be deviated considerably from that in solution. Therefore we have investigated the conformational equilibrium of thiirane 1 by variable-temperature CD

Fig. 1. General view of 3 - acetoxy - $16,17\alpha$ - epithio - pregn - 5 - en - 3β - ol - 20 - on 1 in crystalline state; interatomic distances are shown in Å.

Fig. 2. Partial structures showing projections of ring D and the 17β -acetyl group conformations as viewed from C-20 to C-17.

Fig. 3. Plot of the values of ΔE against θ ; for the conformer, in which C-16–C-17 bond and 20-keto group are anticoplanar, $\theta = 0^{\circ}$; for conformer **B** $\theta = 13^{\circ}$; for conformer **C** $\theta = 30^{\circ}$, etc.

method. Preliminary analysis of CD-spectra for 1 was carried out without employment of low-temperature techniques and the conclusions about preferred conformation were rather uncertain.¹³ This investigation is of special interest because chiroptical and other chemical and physicochemical properties of α,β -epithioketones, not only in the steroid field, have not been investigated at present time.

In Table are listed the data of CD spectra obtained in EPA (ether, i-pentane, ethanol = 5:5:2) at +20°, -190°. A bathochromic shift is observed both for $n \rightarrow \sigma_{c,s}^*$ and for $n \rightarrow \pi_{c=0}^*$ transitions compared with standard magnitudes for these chromophores.^{11,12,16} It indicates that epithio- and carbonyl group in thiirane 1 form a conjugative system. Of interest is that observed negative $n \rightarrow \sigma_{c,s}^*$ Cotton effect at 275 nm does not quite good keep in limit of the symmetry rules proposed for thiiranes.^{11,16} This suggests that the charge distribution in α,β -epithioketone I is much more complicated than in an usual thijrane without an adjacent carbonyl function.

It was shown^{13,17} the signs of $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ Cotton effects of the α,β -epoxyketones follow the "reverse octant rule" and its signs depend on which octant 3-membered ring appear in and are nearly not affected by the remainder of the molecule.

However, the empirical correlations concerning of a contribution of the thiirane cycle adjacent to keto-group to $n \rightarrow \pi^*$, $\pi \rightarrow \pi^*$ Cotton effect are still unknown. The data below show that epithioketone 1 follow a "normal octant rule".11 The molecular (Dreiding) models and octant projection of 1 in the light of "normal octant rule" for carbonyl chromophore indicates that in energy preferred conformation C the episulfide ring falls into a positive octant; therefore a positive Cotton effect would be predicted for $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ transition of the C-20 = 0 group of thiirane 1. According to octant projections the decreasing of the positive rotational strength would be predicted for all other conformers with next energy minimum ($\theta = +30^{\circ} + 60^{\circ}$) and the side-chain rotation up to $\theta = +90^{\circ}$ would give rise to the conformer with negative Cotton effect (Fig. 4). This is in accord with the experimental observations: an augmentation of

Table 1.

ť	$\pi \to \pi^*_{c=0}$ $\Delta E (\lambda_{max}, nm)$	$n \rightarrow \sigma_{c-s}^*$ $\Delta E (\lambda_{max}, nm)$	$n \rightarrow \pi^*_{c=0}$ $\Delta E (\lambda_{max}, nm)$
+ 20	+ 14.25(220)	-3.87(275)	+ 5.70(312)
- 190	+ 16.44(218)	-7.59(274)	+ 10.27(312)

the positive $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ Cotton effects is observed upon decreasing temperature (Table 1). This result is expected since the population of the more stable conformer C (Fig. 2) with positive rotational strength would be increased at low temperature. A positive maximum of the CD band of the $n \rightarrow \pi^*$ -transition at low temperature increases very strongly, $(J_{-190}^{+20} = -44)$ suggesting that thiirane 1 is a conformationally mobile system and the preferred conformation C is not strictly fixed. The constancy of $n \rightarrow \pi^*$ maximum and an absence of new CD maxima in the region allows us to conclude that all the conformations are similar and all of them are located mainly near preferred s-trans conformer C. The equal interest is the strong increasing of the negative $n \rightarrow \sigma_{C-S}$ Cotton effect at low temperature $(J_{-190}^{+20} = -49)$. Such observation might reasonably account for the changes in electronic interactions of epithio- and ketogroup upon changing of their geometrical orientation.

The above spectroscopical examination, the X-ray analyiss data and quantum chemical calculation for thiirane 1 show the lack of conformational homogeneity of 17β -side chain, but the conformational equilibrium is restricted by the conformers with relative trans-orientation of epithio- and keto-groups. The nature of the electronic interactions in α,β -epoxy (epimino, cyclopropyl) ketones has been described as a type of hyperconjugation which results from orbital overlap of the bend bonds of the small ring with the p-orbitals of the attached carbonyl group.^{18,19}. For α,β -epithioketones such investigations have not been carried out. Following Walsh's prediction of special geometric requirement for such interaction²⁰ it has been shown that for maximum conjugative interaction p-orbital of the carbonyl group should lie parallel and symmetrically to the plane of the three-membered ring.^{18,19} Such geometrical position is achieved in s-trans conformation of compounds 1-5. We conclude therefore that one of the factors stabilizing the thiirane 1 in trans-conformation is a conjugation of episulphide cycle and carbonyl group.

Using CNDO/2 method we made an attempt to understand the electron density changes in thiirane 1 compared with oxirane 2. The charge distribution in energy preferred ground station conformations and the interatomic distances determined by X-ray analysis for the molecules 1 and 2 are represented in Fig. 5. The first observation made from the comparative analysis of compounds 1 and 2 (Fig. 5) is that the charge distributions at C-16, C-17 and heteroatom in thiirane 1 differ essentially from that in oxirane 2: an electrophility both of C-17 and C-16 centres in thiirane is very low and the oxygen atom of

Fig. 4. Octant projections of thiirane 1 in conformation C (left) and in conformation, in which torsional angle $\theta = +90^{\circ}$ (right).

Fig. 5. The charge distribution in energy preferred ground state conformations of ring D fragment for 1 and 2, estimated by the CNDO/2 molecular orbital calculations; interatomic distances (\dot{A}) determined by X-ray analysis

heterocycle bears the larger negative charge than the sulphur atom. The second observation is a high polarization of carbonyl group in oxirane 2 and a decrease of its polarization in thiirane 1. Worth noting is the unequal C-S bond distances in thiirane. The first difference may be reasonably accounted for the low electronegativity of sulphur compared with oxygen.²¹ It seems possible to suggest, as it has been done for more simple system $(-S-CH_2-CO-)^{22-24}$ that the decrease of the carbonyl group polarization in thiirane 1 is due to some transfer of carbonyl density from carbonyl group to a vacant orbital on the sulphur atom. Then, the low electrophility of C-17-center in thiirane 1 is due not only by smaller electronegativity of sulphur but also by delocalization of the p-electrons of the C-20=0 bond into the episulphide cycle, i.e. opposite direction to oxirane 2.

These results thus seem to provide a very satisfactory interpretation to the differences in the nucleophilic ring opening reactions undergone by thiirane 1 and oxirane 2. The observed conformational and electronic distinctions between 1 and 2 we may expect to lead to a different chemical behavior of these compounds. Indeed, the low reactivity of thiirane 1 is surely depends on the poor electrophilicity of attacked centres and owing to it the thiirane 1 in contrast to oxirane 2 reacts with great difficulty with nucleophilic reagents at the secondary C-16-atom and does not react at all at tertiary C-17-atom. The side-chain mobility in thiirane 1 may explain the easy sulphur elimination in a conformation in which the coplanarity of carbonyl group and C-17-S bond is achieved. Moreover, the bond C-17-S is longer and so presumably weaker than in usual thiirane. As a result the opening reactions of thiirane 1 are usually completed by desulphurisation.

EXPERIMENTAL

Crystals suitable for X-ray analysis of thiirane I with m.p. 181° were obtained by crystallisation from dioxane. The crystals are orthorhombic, at 20° C a = 12.658(2), b = 25.585(4), c =6.3940(9) Å, V = 2070.7(9) Å³, d(calc.) = 1.25 g/cm⁻³, Z = 4, space group P2₁2₁2₁. The unit cell parameters and intensities of 1911 independent reflections were measured (ω -scan. method, θ max \leq 57°) on an automatic 4-circle diffractomer (Hilger and Watts) equipped with graphite monochromator using CuK_a-radiation. The structure was solved by direct method using MULTAN programme and refined in the full-matrix anisotropic least-squares with 1677 reflections having $F^2 > 2\sigma$. All hydrogen atoms were included in the refinement with the fixed coordinates and isotropic thermal parameters ($B_{iso} = 4.0 \text{ Å}^2$). The absolute configuration was determined taking into account the anomalous scattering by S and O-atoms. The final R-values are R = 0.0624 and R = 0.0787 (for the inverted model R = 0.0692 and $R_G = 0.0864$). All calculations were carried out with EXTL-system on Nova-1200 and Eclipse S/200 computers.

All CD spectra were recorded with the Dichrograph III (Jobin Yvon) in EPA at $\pm 20^{\circ}$ to $\pm 190^{\circ}$ C in cells of thickness 0.01–1.00 cm and concentration of about 0.2–1 mg/g.

Acknowledgement--V. P. thanks the Alexander-von-Humboldt-Stiftung for a grant.

REFERENCES

- ¹A. V. Kamernitzky, A. M. Turuta and T. K. Ustunjuk, *Izv. Akad. Nauk SSSR, Ser. Khim.* 2078 (1976).
- ²A. V. Kamernitzky, A. M. Turuta, T. K. Ustunjuk and Ngo Thi Mai Ahn, *Ibid.* 180 (1979).
- ³I. N. Fundieler, A. V. Kamernitzky and A. M. Turuta, *Ibid.* 2137 (1980).
- ⁴A. A. Akhrem, A. M. Turuta and E. P. Prokofiev, *Ibid.* 1124 (1972).
- ⁵A, V. Kamernitzky, A. M. Turuta and Ngo Thi Mai Ahn, *Ibid.* 924 (1980).
- ⁶Yu, T. Struchkov, A. P. Polishchuk, M. Yu. Antipin, A. V. Kamernitzky and A. M. Turuta, *Bioorg. Khim.* 7, 779 (1981).
- ⁷L. P. Hazel, Ch. M. Weeks and Y. Osawa, Cryst. Struct. Comm.
- 5, 103 (1976).
- ⁸A. V. Kamernitzky, A. M. Turuta and T. K. Ustunjuk, Izv. Akad. Nauk SSSR, Ser. Khim. 132 (1975).
- ⁹K. Jankowski and R. Harvey, Synthesis 607 (1972).
- ¹⁰H. Hofmeister, G. A. Hoyer, G. Cleve, H. Laurent and R. Wiechert, Chem. Ber. 109, 185 (1975).
- ¹¹Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry (Edited by G. Snatzke). Heyden, London (1967).
- ¹²A. A. Akhrem, A. M. Turuta, G. A. Kogan, I. S. Kovnazkaja and Z. I. Istomina, *Tetrahedron* 29, 1433 (1973).
- ¹³T. N. Deshko, A. V. Kamernitzky, G. A. Kogan and A. M. Turuta, *Izv. Akad. Nauk SSSR, Ser. Khim.* 1065 (1976).
- ¹⁴V. M. Tfeitinsky, V. B. Rybakov, V. I. Simonov, A. V. Kamernitzky, V. N. Ignatov and I. S. Levina, *Bioorg. Khim.* 752 (1980).
- ¹⁵P. Dauben and A. T. Hagler, Acc. Chem. Res. 13, 105 (1980).
- ¹⁶G. Gottareli, B. Samori, I. Moretti and G. Torre, J. Chem. Soc. Perkin Trans. II 1105 (1977).
- ¹⁷K. Kuriyma, H. Tada, Y. K. Sawa, Sho Ito and Isamu Itoh, *Tetrahedron Lett.* 2539 (1968).
- ¹⁸A. Padwa, L. Hamilton and L. Norling, J. Org. Chem. 31, 1244 (1966).
- ¹⁹R. Barlet, P. Babet, H. Handel and J. L. Pierre, Spectrochim. Acta **30A**, 7, 1471 (1974).
- ²⁰A. D. Walsh, Trans. Faraday Soc. 45, 179 (1949).
- ²¹G. Simons, M. E. Zandler and E. R. Talaty, J. Am. Chem. Soc. 98, 7868 (1976).
- ²²B. Wladislaw, R. Rittner and H. Viertler, J. Chem. Soc. B 1859 (1971).
- ²³B. Wladislaw, H. Viertler, P. R. Olivato, I. C. C. Calegão, V. L. Pardini and R. Rittner, J. Chem. Soc. Perkin Trans. II 453 (1980).
- ²⁴K. C. Cole, S. Sandorfy, M. T. Fabi, P. R. Olivato, R. Rittner, C. Trufem, H. Viertler and B. Wladislaw, J. Chem. Soc. Perkin Trans. II 2025 (1977).